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ABSTRACT

This article describes progress in the homogenization of global radiosonde temperatures with updated

versions of the Radiosonde Observation Correction Using Reanalyses (RAOBCORE) and Radiosonde In-

novation Composite Homogenization (RICH) software packages. These are automated methods to ho-

mogenize the global radiosonde temperature dataset back to 1958. The break dates are determined from

analysis of time series of differences between radiosonde temperatures (obs) and background forecasts (bg) of

climate data assimilation systems used for the 40-yr European Centre for Medium-Range Weather Forecasts

(ECMWF) Re-Analysis (ERA-40) and the ongoing interim ECMWF Re-Analysis (ERA-Interim).

RAOBCORE uses the obs2bg time series also for estimating the break sizes. RICH determines the break

sizes either by comparing the observations of a tested time series with observations of neighboring ra-

diosonde time series (RICH-obs) or by comparing their background departures (RICH-t). Consequently

RAOBCORE results may be influenced by inhomogeneities in the bg, whereas break size estimation with

RICH-obs is independent of the bg. The adjustment quality of RICH-obs, on the other hand, may suffer

from large interpolation errors at remote stations. RICH-t is a compromise that substantially reduces in-

terpolation errors at the cost of slight dependence on the bg.

Adjustment uncertainty is estimated by comparing the three methods and also by varying parameters in

RICH. The adjusted radiosonde time series are compared with recent temperature datasets based on (Ad-

vanced) Microwave Sounding Unit [(A)MSU] radiances. The overall spatiotemporal consistency of the ho-

mogenized dataset has improved compared to earlier versions, particularly in the presatellite era. Vertical

profiles of temperature trends are more consistent with satellite data as well.

1. Introduction

The radiosonde network is a central part of the global

upper air observing system. Since many stations have

operated since the late 1950s or longer, radiosonde

temperature records have been extensively used also for

climate studies. It became clear that these records need

to be homogenized before their trends and low-frequency

variability can be interpreted (Parker et al. 1997).Various

homogenization approaches for the global radiosonde

network have been put forward (Luers and Eskridge

1995; Lanzante et al. 2003; Thorne et al. 2005b; Free

et al. 2005; Sherwood et al. 2008; McCarthy et al. 2008;

Titchner et al. 2009) but none of them could explain and

remove the apparent pervasive cooling bias in the radio-

sonde temperature data compared to satellite data. In

particular, the vertical trend profiles in the tropics did not

show the enhanced upper tropospheric amplification as

predicted by climate models, with the exception of the

ensemble described in Thorne et al. (2011a) that included

this possibility in its uncertainty bounds. Only temperature

trend assessments based on changes in the zonal mean

thermal wind structure support enhanced upper tropo-

spheric warming in the tropics (Allen and Sherwood 2008).

Discrepancies between layer mean atmospheric tem-

peratures derived from radiances of the Microwave

Sounding Unit (MSU) and MSU-equivalent tempera-

tures calculated from radiosonde data can be attributed

at least partly to inhomogeneities in the raw radiosonde

data. Any remaining inconsistency would be caused by

inhomogeneities and uncertainties in the MSU bright-

ness temperatures as described, for example, by Thorne
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et al. (2011b) orMears et al. (2011). Temperature trends

from raw radiosonde data are also inconsistent with

climate models, which project an upper tropospheric

warming maximum, especially in the tropics (Santer

et al. 2005; Trenberth et al. 2007; Santer et al. 2008).

Haimberger (2007) introduced a new homogenization

method [Radiosonde Observation Correction Using

Reanalyses (RAOBCORE)] that analyzed not only

0000 2 1200 UTC difference time series and station

history information but also time series of background

departures from the 40-yr European Centre for

Medium-Range Weather Forecasts (ECMWF) Re-

Analysis (ERA-40; Uppala et al. 2005). These back-

ground departures, also referred to as innovations, are

the differences between observations y and the state

vector xb of the background forecast by an assimilating

model. Here xb is mapped to the observation location by

the observation operator H. Following the notation in

data assimilation literature (see, e.g., Courtier et al.

1998; Lewis et al. 2005) we write t 5 y 2 Hxb. The

background state Hxb is considered independent of the

radiosonde observations y, which is generally a good

assumption except that persistent common biases at sev-

eral neighboring radiosonde stations may have a notice-

able effect on the background state (Haimberger 2007).

Analysis of daily innovation time series proved highly

efficient for break detection, but break size estimation

from reanalysis innovations is complex because of a few

inhomogeneities of the ERA-40 background forecast

and analysis time series (Uppala et al. 2005; Haimberger

2007; Grant et al. 2008; Screen and Simmonds 2011).

RAOBCORE, which uses innovation series for both

break detection and innovation, has also been criticized

for being not independent of satellite data and of the

assumptions made in the assimilating model. This aspect

certainly limits the value of radiosonde data homoge-

nized by RAOBCORE for comparison with satellite

datasets. Nevertheless, RAOBCORE adjustments have

been used as radiosonde bias correction in the interim

ECMWF Re-Analysis (ERA-Interim; Dee et al. 2011b;

Haimberger and Andrae 2011), in the Modern-Era

Retrospective Analysis for Research and Applications

(MERRA; Rienecker et al. 2011), and in the Japanese

55-yr reanalysis (Ebita et al. 2011).

To overcome the dependence problem, Haimberger

et al. (2008) developed a method called Radiosonde

Innovation Composite Homogenization (RICH), which

uses the breakpoint date information fromRAOBCORE

but calculates the break size estimates by comparison

with neighboring radiosonde temperature records. Since

these reference records are independent of satellite data,

satellite data can affect RICH estimates only through

the breakpoint dates provided by RAOBCORE. RICH

worked quite well for homogenizing the time series of the

satellite period 1979 onward. Also it revealed an upper

tropospheric warming maximum in the much debated

period 1979–99 (Santer et al. 2008).

The present paper is motivated by the fact that

Haimberger et al. (2008) provided only rudimentary

documentation of RICH, by the availability of verymuch

enhanced background forecasts due to the advent of

ERA-Interim (Dee andUppala 2009; Dee et al. 2011a,b),

and by substantial extensions and improvements made to

the RICH algorithm itself. Another motivation was the

desire to quantify the uncertainties in the homogeniza-

tion approach through the use of ensemble techniques.

This has been pioneered by McCarthy et al. (2008) and

Thorne et al. (2011a) for radiosonde temperatures. En-

sembles of MSU brightness temperatures have become

available recently as well (Mears et al. 2011) and are also

employed for assessing uncertainties in SST data (Kennedy

et al. 2011a,b). They allow for much better assessment of

whether differences between various datasets are sta-

tistically significant.

The next section describes the RICH method and its

parameters in some detail. Section 3 describes input data

for RICH as well as the datasets used for comparison

and validation. Section 4 explains themethodology used to

quantify parametric and to a certain extent also structural

adjustment uncertainties. Section 5 shows results for se-

lected stations and large-scale means. Implications of the

results for a general climate data improvement strategy

are discussed in the conclusions.

2. Description of the RICH adjustment method

The basic idea of RICH—homogenization of tested

time series through comparison with neighboring refer-

ence series of the same observation type—is not new. A

large variety of upper air data and surface data homog-

enization methods work with this idea (see, e.g., Thorne

et al. 2005b; Sherwood et al. 2005; Venema et al. 2012).

The main novelty of RICH is that it tries to make

optimal use of the output from a dynamical climate data

assimilation system for break detection and adjustments.

For this purpose it uses the break detection part of

the RAOBCORE algorithm, which analyzes 0000 and

1200 UTC daily time series of background departures

t 5 y 2 Hxb from reanalyses.

For radiosonde temperature measurements H is

specified as a simple interpolation from the ECMWF

model grid to the observation location. The innovations

are an important standard diagnostic for time series

models or data assimilation systems. Haimberger (2007)

demonstrated that statistical analysis of daily innovation

time series with homogeneity tests is quite efficient in
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finding breaks in these time series because of their small

variance. The RAOBCORE algorithm, which does this

analysis, has not changed appreciably since publication

in 2007. However, the background forecast data used as

reference have improved (see section 3).

RAOBCORE yields the date of potential breaks in

the radiosonde time series. These dates are input for the

Radiosonde Innovation Composite Homogenization al-

gorithm, where the word ‘‘innovation’’ in the acronym

should remind the user that the used break dates have

been calculated by analyzing innovation time series.

a. Definition of averaging operators and break size
estimates

For break estimation, RICH compares either neigh-

boring observation (obs) time series (RICH-obs) or

neighboring t time series (RICH-t). The obs time series

are independent of satellite or other nonradiosonde

observing systems. RICH-obs assumes that a sufficiently

long homogeneous reference time series can be con-

structed from neighboring radiosonde temperature time

series for each break date in a tested station time series

so that the size of the shift can be accurately estimated.

While the essence of break size estimation is rather

simple (comparingmeans),we formally define the estimates

to make the details of the break size estimation process

transparent. In this paper we denote differences between

tested and reference stations as follows:

i=jk
x 5 ixj 2 ixk , (1)

where ixj denotes either obs or bg temperature values or

their difference t 5 obs 2 bg at station j, and i is the

launch index that stands for the date and timewhen the x

values were calculated or measured. Also, i=jk
x denotes

the difference of x values between stations j and k at the

same observation time i. Since the stations j and k are

spatially separated, it seems suitable to use the gradient

symbol for this difference.

In general we do not want to compare individual

values but averages over a time period. We define the

time average xj(a):

1

n
�
n

i51

ixj 5 xj(a) . (2)

The choice of the interval a depends on the dates of

other breaks in the tested or the reference series as well

as on data availability. Its length is 0.5–8 yr. The sample

size n is the number of launches (130–2920) at a specific

time of day (0000 or 1200UTC); n depends on the length

of a and data availability at station j in this interval.

While smaller sample sizes are possible they have not

been found advantageous. Details for the choice of the

intervals used for break size estimation are given in

section 2b below. Note also that xj(a) is seasonally in-

variant, as are all means below. Therefore seasonal var-

iations of biases, especially in polar regions, are not taken

into account. Andrae et al. (2004) and Haimberger and

Andrae (2011) discuss methods to estimate the radiation

error as a function of solar elevation. They can comple-

ment the seasonally invariant adjustments calculated in

this paper but this is not pursued further here.

1) MEAN DIFFERENCES OF OBSERVATIONS AND

BACKGROUND

The observation difference is the mean temperature

difference between observations from two neighboring

radiosonde stations and is defined as

=jk
obs(a)5 obsj(a)2 obsk(a) , (3)

where obs are the measured temperatures at stations

j and k in the interval a, which contains n pairs of ob-

servations; obsj(a) and obsk(a) are mean values esti-

mated at stations j and k in interval a. It is important that

only those data are counted where values at both sta-

tions j and k are available. This reduces the risk of un-

realistic differences due to unequal sampling at stations j

and k. The same quantity can be defined for the bg:

=jk
bg(a)5 bgj(a)2 bgk(a) . (4)

Let us now consider the situation where an interval

a with n numbers of observation pairs and an interval

b withm numbers of observation pairs are separated by

a break in the time series of station k. Then we expect

that the observation difference to station j in the two

intervals is different: =jk
obs(a) 6¼ =jk

obs(b). The size of the

change between intervals a and b can be written as

Djk
obs(a,b)5 [obsj(b)2 obsk(b)]2 [obsj(a)2 obsk(a)]

5=jk
obs(b)2=jk

obs(a) . (5)

If the stations j and k are close to each other, and if

the reference time series at station j is homogeneous,

Djk
obs(a, b) already represents an unbiased estimate for the

size of the break at station k occurring between intervals

a and b. As explained in section 2b below, RICH-obs uses

weighted means of Djk
obs from several neighboring stations

for estimating the break sizes at station k. The black pro-

files in the left panels of Fig. 1 are Djk
obs(a,b) estimates for

different reference stations j and different pressure levels.

The situation becomes more complicated, however, if

the distance between stations is large. In this case the true
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mean temperatures at stations j and k may evolve dif-

ferently due to regional climate anomalies. In such situ-

ations Djk
obs(a, b) could be different from zero even if both

records at stations j and k were free of artificial jumps.

Interpreting Djk
obs(a,b) as break size estimate would lead

to false adjustments in this case and must be avoided.

The problem can be circumvented if the short-term

climate anomalies can be realistically represented by an

independent dataset. ERA-40/ERA-Interim background

fields (bg) are generally, with known exceptions in polar

regions (e.g., Grant et al. 2008), of sufficient quality that

they can represent regional climate anomalies well. If

this is true, the difference Djk
bg, defined as

Djk
bg(a, b)5 [bgj(b)2 bgk(b)]2 [bgj(a)2 bgk(a)]

5=jk
bg(b)2=jk

bg(a) , (6)

describes a climate change in the temperature gradient

between stations j and k, which needs to be subtracted

from the break size estimate Djk
obs(a, b) gained from

comparison of the observations.

2) INNOVATION DIFFERENCES BETWEEN

INTERVALS AND STATIONS

If one considers the bg temperature gradient to be

a true estimate of the state of the atmosphere, the in-

novations, or obs2 bgdifferencesmust contain information

about the systematic difference of the radiosondes that

were used. For a single station (k) and one interval (a)

the obs 2 bg difference is defined as

tk(a)5obsk(a)2 bgk(a) . (7)

FIG. 1. RICH break size estimation: black curves are individual (left) Djk
obs and (right) Djk

t profiles for a break in the

radiosonde record of Bethel (Alaska, 70219) in July 1989. Thick green profile (identical in all four panels) is the

RAOBCOREestimate, thick blue profiles are (left) RICH-obs and (right)RICH-t estimates, respectively. (top) Profiles

from first iteration of RICH (see Fig. 3; 10 neighbors used); (bottom) profiles from second iteration with 30 neighbors.
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If the background provides a spatially and temporally

homogeneous field, a change in the systematic bias of

radiosonde data, caused by a change of observation

systems, must change tk(a). This value can be estimated

as

Dk
t (a,b)5 [obsk(a)2 bgk(a)]2 [obsk(b)2 bgk(b)]

5 tk(a)2 tk(b) . (8)

This estimate is used to calculate the adjustments

performed by RAOBCORE (Haimberger 2007). As

one can see, no reference station j is necessary to get

a break size estimate in this case. However, evaluation

of Eq. (8) puts high demands on the homogeneity of the

bg. The green curve in all panels of Fig. 1 is the profile of

Dk
t (a,b) for a specific break in the time series of Bethel,

Alaska.

The RICH-t method makes different use of the bg. It

requires only that the gradient of the bg between sta-

tions j and k be realistic. The absolute value of the

bg does not need to be unbiased or at least homoge-

neous, as is required for RAOBCORE. It uses the in-

formation provided by both the background and the

time series of a neighboring station for break size esti-

mation. An innovation difference =jk
t (a) is defined as

=jk
t (a)5 [obsj(a)2 bgj(a)]2 [obsk(a)2 bgk(a)]

5 tj(a)2 tk(a) . (9)

It thus combines observations and background in-

formation of two neighboring radiosondes, and is a

modification of =jk
obs. If only station k changes its upper

air observation system, and the background provides

a homogeneous field, the difference of =jk
t before and

after the artificial break must contain information about

the systematic error in the observations:

Djk
t (a, b)5 [obsj(b)2 bgj(b)]2 [obsk(b)2 bgk(b)]

2 [obsj(a)2 bgj(a)]1 [obsk(a)2 bgk(a)]

5=jk
t (b)2=jk

t (a) . (10)

In contrast to Djk
obs(a, b), this difference takes a possible

regional climate anomaly into account, provided the bg

gradients are realistic. Using definitions (5) and (6),

Djk
t (a, b) can also be written as

Djk
t (a, b)5Djk

obs(a, b)2Djk
bg(a, b) . (11)

RICH-t uses weighted means of Djk
t from several

neighboring stations to estimate the break sizes at

station k. The black profiles in the right panels of Fig. 1

are Djk
t (a,b) estimates for different reference stations j

and different pressure levels.

3) INTERPRETATION

If the bg is correct at all times and places and the

reference radiosonde station time series is homoge-

neous throughout the combined interval [a, b], the break

size is given as the value of Djk
t , which is related to Djk

obs

and Dk
t as

Djk
t (a,b)5Djk

obs(a,b)2Djk
bg(a,b)5Dk

t (a, b)2Dj
t(a, b) .

(12)

In the ideal case, if both bg and neighboring radiosonde

record j are accurate and homogeneous, Dk
t should be

equal to Djk
t . For an ideal reference radiosonde station

Dj
t is zero, if the bg is free of artificial shifts, and an op-

timal bg would have zero tj in case of true observations.

IfDk
t andD

jk
t are different, however, it is difficult to tell

where the discrepancies are coming from. If the back-

ground is biased and the reference sonde j is homoge-

neous, one can speculate that even a biased background

would deliver a realistic =
jk
bg, making Djk

t a better esti-

mate for the systematic bias between radiosondes than

Dk
t . If the reference record is inhomogeneous, it may be

better to use Dk
t for break estimation since this differ-

ence is not affected by inhomogeneities in record j.

It is instructive to compare the standard errors of Dk
t ,

Djk
t , and Djk

obs. These are calculated for each of these Dm

as

sm 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

na1 nb
[nasx(a)

21 nbsx(b)
2]

s
, (13)

where sx(a) is the standard deviation of

tk(a) for m5RAOBCORE,

obsk(a)2 obsj(a) for m5RICH-obs,

tk(a)2 tj(a) for m5RICH-t .

The same definition applies to sx(b). Note that the size

of a possible break between intervals a, b has no effect

on the combined standard deviation sm. As is shown in

Fig. 2, sm is smaller for RAOBCORE than for RICH-t

and much smaller than for RICH-obs. The main reason

is the smallness of the individual background departures

(itk) compared to background departure differences

(itk 2 itj) and to temperature differences (iobsk 2 iobsj).

A second reason is the smaller sample sizes in RICH due

to missing data at individual reference stations.
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Figure 2 shows also to what extent standard errors are

smaller in the NH extratropics than in the tropics and in

the SH extratropics. For RICH there is a strong de-

pendence of standard errors on the distance to the

neighboring station. There is relatively weak dependence

on the period considered. Estimates in the satellite era

are only slightly more accurate than in the presatellite

era. The vertical profile of the standard errors is in-

teresting in that it does not increase monotonically with

height. Especially for RICH-obs the tropopause region is

themost challenging, since at those levels near jet streams

it can happen that data in the troposphere at one station

are compared with data at a neighboring station at the

same pressure level that is already in the stratosphere.

It should be noted that only Dk
t immediately yields the

break size, whereas inRICHvalues ofDjk
t orDjk

obs have to

be averaged over several stations j to yield the break size

estimate. This reduces the standard error to a certain

extent, depending on the distribution of neighboring

stations, but not much since the iobsk 2 iobsj differences

are not independent of, for example, the iobsk 2 iobsj11

differences.

b. Sampling strategy for constructing the reference
series

The expressions above describe break estimates from

comparison of a test station k with a single reference

station j. To reduce noise it is necessary to consult sev-

eral reference stations and to build a weighted average

over the break estimates. For RICH-obs, the break es-

timate at a known breakpoint date t at pressure level p is

D̂
k

obs(p, t)5
1 

�
J

j51

wjk

! �
J

j51

Djk
obs(a

jk, bjk, p, t)wjk . (14)

The hat symbol denotes averaging over the break size

estimates from comparison with a sample of neighboring

stations j. Note that the intervals ajk, bjk are dependent

on the tested station k and on reference station j. This

dependency exists also in the formulas above but has not

been made explicit to keep the notation simple. The

location of breakpoints at reference station j as well as at

the tested station k near the breakpoint to be adjusted

determines the length of intervals ajk, bjk. The break es-

timates from the individual comparisons with reference

series are then averaged using weights wjk. For RICH-t,

we use the same averaging procedure.

While several weighting procedures are possible, we

chose weights decreasing exponentially with distance:

wjk 5 exp(2djk/1500 km). (15)

The parameter d is not the usual spherical distance but

has been chosen as

djk 5 rEDu
jk 1 rE(0:1Dl

jk) , (16)

where rE is Earth’s radius andDujk,Dljk are latitude and
longitude differences between stations j and k. Note that

the meridional distance is weighted much higher than

the east–west distance, especially at low latitudes. This

choice reflects the fact that climate zones depend mostly

FIG. 2. Log-pressure profiles of sample error standard deviation of break size estimates as defined in Eq. (13) for RAOBCORE (solid),

RICH-obs (dashed), and RICH-t (dotted). First row shows dependency on region: (a) 208–908N, (b) 208S–208N, and (c) 908–208S. Second
row shows dependency on (d),(e) distance between stations and epoch [(f) presatellite (1958–78) and satellite (1979–present) periods].
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on latitude, at least in zeroth order (Kottek et al. 2006;

Rougier 2007) and is consistent with findings of Wallis

(1998) and McCarthy (2008). It also reduces the risk to

make composites of stations where the tropopause

height is different. The parameter d is used not only for

weighting the composites, but also for choosing the sta-

tions used in the composites. Neighboring stations are

sorted according todjk. Only the nearest stations that have

enough data for break size estimation at station j are used

for the composite. The number of neighbors varies be-

tween 3 and 30 (see section 4b below). Depending on the

region, the most distant neighbor considered is between

300 km (over densely populated areas) and 10 000 km (in

the tropical Pacific or the Southern Ocean) away.

Other choices for wjk such as linear correlation of tem-

perature series from reanalyses are also possible (Thorne

et al. 2005b). However, correlation is rather height de-

pendent. The linear temperature correlation patterns in

the lower troposphere look very different to the correla-

tion patterns at the tropopause level. We chose to avoid

different weights at different levels.

The validity of the break size estimates relies on the

assumption that the difference time series for estimating

Djk
obs or D

jk
t are temporally homogeneous before and af-

ter a breakpoint at the test station. In other words, it is

assumed that each difference in the series belongs to the

same statistical population. To guarantee this, it is es-

sential to know the dates of breakpoints of the tested

stations and of the reference stations and to choose ajk

and bjk accordingly. Only then averaging over in-

homogeneities in the records can be avoided. Figure 3

shows how the averaging intervals a and b are influenced

by the dates of neighboring breakpoints at the tested

station and the reference station.

In the case of RICH, the dates of breakpoints have

been determined with RAOBCORE. As described by

Haimberger (2007), RAOBCORE analyzes itk (in-

novation) time series using a version of the standard

normal homogeneity test (Alexandersson and Moberg

1997) that has been adapted to work well with difference

series that have an annual cycle and data gaps, a com-

mon case for radiosonde temperatures especially at high

levels. About 8000 breaks could be detected between

1958 and 2011 (an average of about seven breaks per

station).Withmore liberal parameter settings, evenmore

breaks could be identified, but too many breakpoints

FIG. 3. Illustration of data selection when adjusting break (thick vertical line) at tested series.

Slashes are other breakpoints at tested station and at reference station. In first iteration, time

series must be considered inhomogeneous at all breakpoints. Gray areas indicate intervals used

for break estimation. Data near breakpoints are not used to account for uncertainty in break

date detection. In the second iteration, the reference series from the first iteration are con-

sidered homogeneous. Also the tested series is considered homogeneous after the breakpoint

just tested, since the adjustment procedure works backward, starting from the most recent

breakpoint. Thus the interval b is often much larger in second iteration. Interval a is bounded

only by earlier breakpoints in the tested series but not in the reference series and thus may also

be longer.

8114 JOURNAL OF CL IMATE VOLUME 25



restrict the length of the time series available for break

size estimation and could lead to unnecessarily high noise

levels in the break size estimates.

c. Adjustment procedure

The break sizes at station k are estimated, beginning

with the most recent break. The record is then adjusted

at this breakpoint. Then the next earliest break is ad-

justed, working backward in time. This procedure is

performed for every station k on the globe with at least

two years of data.

It has proven useful to perform the adjustment of the

global radiosonde temperature dataset in two steps. In

the first iteration, averaging over known breakpoints has

been strictly avoided (see Fig. 3a). This idea is consistent

with the concept of pairwise intercomparison together

with using only homogeneous subperiods for estimating

break sizes (Della-Marta and Wanner 2006; Sperka

2007; Caussinus and Mestre 2004; Menne and Williams

2009). Also, the number of reference series has been

limited to a very small number (3 or 10) to reduce the

risk of using of neighboring stations that are far away.

However, the spatial noise in trend estimates after the

first iteration is relatively large because of the small

number of reference stations and the sometimes short

time intervals permitted for break size estimation.

When the first homogenization has been applied at all

radiosonde stations, one could finish. It proved highly

advantageous, however, to perform a second adjustment

step where the tested series are compared with neigh-

boring series that have been homogenized in the first it-

eration. In the second iteration, it is assumed that the

pervasive biases in the reference stations have been re-

moved in the first iteration. If this is the case, it is allowed

to average over breakpoint dates in the reference stations

(see Fig. 3b). If it is known that this is not the case, because

the adjustment failed in the first iteration, the RICH al-

gorithm avoids averaging over those breakpoint dates in

the reference stations. The main reason for failure in the

first iteration at some pressure level is lack of reference

data. In many cases only the uppermost pressure levels

are affected. The default averaging interval of 8 years in

the second iteration is reduced only by breaks in the test

station occurring earlier than the break just estimated,

and by data gaps. Since the conditions on break dates are

less strict in the second iteration, more stations can be

used as reference stations without the need to interpolate

over large distances. Thus the number of stations used for

break size estimation is set 3 times higher in the second

iteration.

The two-step approach minimizes the risk of averag-

ing over inhomogeneous samples. Nevertheless, the

following additional measures have been taken to avoid

averaging over breakpoints and thus noisy break esti-

mates or even divergence of the iterative procedure:

d Aneighboring station is used as reference only if it has

no breakpoint 180 days before and 180 days after the

breakpoint diagnosed by RAOBCORE at the tested

station.
d At least 130–330 good values must be available for

comparison before/after the breakpoint and the next

breakpoint at the tested or the reference station.
d At least 30 days of data next to the breakpoints at the

tested station and at the reference station are dis-

carded to avoid inhomogeneities due to inaccurately

detected breakpoints. If the averaging interval is long

enough, 180 days of data are discarded. If the sample

size is small (i.e., close to the minimum number

specified above), the number of discarded data is

reduced to 120, then 60, then 30.
d Care is taken to avoid unequal sampling of the annual

cycle in the intervals before/after the breakpoint of the

tested station, as described in Haimberger (2007). If,

for example, no January values are available in in-

terval ajk, January values in interval bjk are deleted.
d When calculating the break size estimate D̂k

obs(p, t) from

the sample of neighboring stations, the maximum and

minimumbreak size estimate are discarded if the sample

size is larger than three. This trimming of themean leads

to more robust break size estimates. We refrained from

using the even more robust median or the interquartile

range average, however, since we found that spatiotem-

poral consistency is better when using the mean or only

slightly trimmed means (not shown).

All these measures are designed to ensure that the

members of the compared samples in intervals ajk and

bjk belong to the same populations so that the estimated

means are meaningful. It may seem trivial to mention

this, but we think that clean separation between homo-

geneous and inhomogeneous parts of the analyzed re-

cords is the key to successful homogenization. The good

performance of the pairwise intercomparison methods of

Caussinus and Mestre (2004) and Menne and Williams

(2009) in a recent intercomparison of surface data ho-

mogenization methods (Venema et al. 2012) supports

this.

It should also be noted that the above measures are

only successful if the vast majority of breaks have been

detected by RAOBCORE. Undetected breaks still may

contaminate the break size estimates. However, the

settings of RAOBCOREhave been quite liberal and the

sensitivity experiments below indicate that there are

only few undetected breaks.

The consequent avoidance of averaging over inho-

mogeneities is most likely a key advantage compared to
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Thorne et al. (2005b) and McCarthy et al. (2008) and to

Sherwood et al. (2008), who have also tried to avoid it

but used monthly data.

The use of daily data leavesmuchmore choices in data

selection and allows us to cope with breaks separated by

only a few months. It also helps to avoid unjustified

adjustment of sampling biases that may occur, for ex-

ample, if balloons burst earlier if the stratosphere is

colder. While daily data could be used to make more

sophisticated adjustments that modify the probability

distribution functions of the observations (e.g., Dai et al.

2011; Della-Marta and Wanner 2006), we restricted

ourselves to modifying the mean, since this is challeng-

ing enough, as is clearly shown in Figs. 2 and 4.

ADJUSTMENT OF THE CLIMATOLOGY

As already discussed by Haimberger (2007), the avail-

ability of background departure time series allows efficient

adjustment of the mean of short time series that cannot be

analyzed for breakpoints and of time series that are known

to have sizeable biases even in their most recent part. The

basic assumption is that the mean background departure

of the most recent part (at most 8 years, with a minimum

1/2 year for very short records) should be equal to the

background departures of neighboring stations. Themean

difference between the background departures =jk
t (a) of

stations j, k has already been defined in Eq. (9). The time

interval a is now the most recent part of the series.

The adjustment of the most recent part is now calcu-

lated as

D̂k
mr( p, t)5

1 
�
J

j51

wjk

! �
J

j51

=jk
t (a

jk, p, t)wjk . (17)

This is formally quite similar to the break size calcu-

lation used in RICH-t. The weights have the same

meaning as above and of course only one time intervalmust

be considered per intercomparison. Since the adjustment of

the climatology is performed after the homogeneity

adjustments, the involved time series are considered

homogeneous.

While the adjustment of the climatology appears

formally simpler, it works only if the neighboring sta-

tions are unbiased. This strong assumption is justifiable

only for a few of themost recent radiosonde types in use.

We chose stations using Vaisala RS90, RS92, Meisei,

and current Sippican radiosondes (type codes 37, 52, 53,

60, 61, 62, 63, 66, 67, 71, 72, 73, 74, 78, 79, 80, 81, 82, 83,

47, 55, 56, 26, 76, 85, 86, and 87 according to the World

Meteorological Organization (WMO) Binary Universal

Form for data Representation (BUFR) common code

table C-2) as reference types stations (about 400). These

are also fairly well distributed over Earth.

The adjustment of the climatologies does not affect

trend analysis. However, it allows to bias-correct even

very short records that are normally not considered for

climatological purposes but are certainly useful for re-

analysis efforts, and it reduces the rejection rate of records

during assimilation.

3. Input data and comparison strategy

The following input data have been used for this in-

tercomparison:

d Daily (0000 and 1200 UTC) radiosonde data on 16

standard pressure levels (10, 20, 30, 50, 70, 100, 150,

200, 250, 300, 400, 500, 700, 850, 925, 1000 hPa) from

the Integrated Global Radiosonde Archive (IGRA;

Durre et al. 2006) and the ERA-40/ERA-Interim

radiosonde archives from 1958 onward. Metadata

information is mainly based on the IGRA metadata

file, whose origins go back to Gaffen (1996) and which

FIG. 4. Log-pressure profiles of rms difference between break size estimates from RAOBCORE and (a) RICH-obs and (b) RICH-t for

different maximum distances between stations.
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is constantly updated (http://www1.ncdc.noaa.gov/pub/

data/igra/igra-metadata.txt). This valuable source of

information reports 8715 events regarding the radio-

sonde type alone. Additional metadata information is

retrieved from ERA-40/ERA-Interim radiosonde re-

cords, which often include the radiosonde type as

transmitted by the Global Telecommunication System

from about 1990 onward.
d Background forecasts from the ERA-40/ERA-

Interim reanalyses interpolated to the station locations.

The properties of the forecasts are quite different

between ERA-40 (Uppala et al. 2005; used for the

period 1958–78) and ERA-Interim (Dee et al. 2011a,b;

for the period 1979–2010). Most notably, ERA-40 uses

6-hourly cycling and a three-dimensional variational

data assimilation (3D-VAR) system, whereas ERA-

Interim uses a considerably more advanced 4D-VAR

assimilation system with a better forecast model, 12-h

cycling, and variational bias correction of satellite data.

No bias correction has been applied to radiosonde

temperatures in ERA-40 during the period 1958–79. In

ERA-Interim, the radiosondes have been adjusted to

remove both the annual mean bias, using RAOBCORE

v1.3 adjustments, and the annual cycle of the radiation

error. For a more detailed description, see Haimberger

and Andrae (2011).

To avoid a shift in the reference at the change point

from ERA-40 to ERA-Interim in 1979, zonal mean

background departures between reanalysis and radio-

sonde observations have been calculated for the years

1978 and 1980. The difference in these zonal mean

departures has been taken as estimate for the shift

betweenERA-40 andERA-Interim temperatures. 1979

has been avoided since it had atypical data coverage due

to the Global Weather Experiment in 1979. The shift

has been subtracted from the ERA-40 background

departures. While this procedure may reduce the break

detection power of RAOBCORE during these years, it

has been found to yield the smoothest transition from

ERA-40 to ERA-Interim. Alternative approaches, such

as using twentieth-century reanalysis (Compo et al.

2011) data or using regional instead of zonal means, left

some shifts in the time series of zonal mean background

departures after the adjustment and also led to less

spatiotemporal consistency of trend estimates in time

intervals that include the year 1979. Further investiga-

tions of the uncertainties introduced through this tran-

sition will nevertheless be necessary in the future.

Solely for intercomparison, we use the following datasets:

d Remote Sensing Systems (RSS) MSU v3.3 brightness

temperatures (Mears and Wentz 2009) on the standard

2.58 3 2.58 lat/lon grid at lower stratospheric (LS) and

upper tropospheric (TS) and midtropospheric (MT)

layers. An ensemble of realizations of this dataset using

a Monte Carlo technique is available as well (Mears

et al. 2011). From this ensemblewe use themean and the

5% and 95% percentiles, where the ensemble members

have been sorted after their global mean trend.
d University of Alabama at Huntsville (UAH) MSU

v5.4 data (Christy et al. 2003) on the standard 2.58 3
2.58 lat/lon grid at the LS and MT layers and National

Environmental Satellite, Data and Information Ser-

vice (NESDIS) Center for Satellite Applications and

Research (STAR) (Zou et al. 2009) version 2.0 data at

LS, TS, and MT layers. The RSS, UAH, and STAR

temperature datasets have been calculated from the

same raw radiance datasets, though with quite differ-

ent analysis methods.
d The updated Hadley Centre Atmospheric Tempera-

ture (HadAT2) dataset (Thorne et al. 2005a;McCarthy

et al. 2008). It is a well-known homogeneity-adjusted

pure radiosonde dataset containing 676 stations. The

input data resolution is monthly and the adjustments

are provided with seasonal resolution. An ensemble of

realizations of this dataset is described by Thorne et al.

(2011a). Minima, 25%/50%/75%, and maxima of zonal

belt mean trends 1979–2003 are available. Some of the

variations in this ensemble appear very strong (e.g.,

a removal of signal experiment). Since the trend in-

terval is also shorter than the one analyzed in the

present paper, the uncertainties are likely smaller than

the values given for this ensemble. Therefore we pre-

ferred to use the interquartile range of this ensemble as

uncertainty estimate in the comparisons below.

For comparison with satellite data, the radiosonde and

reanalysis temperature profiles have been converted into

brightness temperatures using the Radiative Transfer

for TOVS version 10 (RTTOV v10) software package

(Saunders et al. 2011). This is an improvement to earlier

studies that used static weighting functions that leads to

up to 20% less variance in the difference series between

brightness temperatures from adjusted radiosonde data

and MSU data, especially in the lower stratosphere.

We did comparisons also with Global Positioning

System radio occultation data for the period 2001–10,

but these are published elsewhere (Ladstätter et al.

2011; Steiner et al. 2011).

4. Estimation of adjustment uncertainty

Homogenization is useful if the adjustment un-

certainties are smaller than the time variation of biases

that need to be estimated. That has to be shown for the
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adjustments of individual breaks as well as for the global

mean adjustments that affect estimates of the global

climate change signal.

For this purpose we need to understand the un-

certainties in the adjustments that are calculated by

RICH/RAOBCORE. We reduce the uncertainty of the

low-frequency variability estimates only if we can show

that the adjustment uncertainties are appreciably

smaller than the estimated time-varying biases. This

section tries to highlight some manifestations of the

adjustment errors due to sampling of neighbor stations

and due to setting of parameters in the adjustment

methods. Differences between RICH-obs/RICH-t and

RAOBCORE may be seen as manifestation of struc-

tural uncertainties (Thorne et al. 2005a), whereas dif-

ferences within the RICH-ensembles are interpreted as

parametric uncertainties.

About 8000 breaks are found by RAOBCORE in the

period 1958–2011, and for each of these breaks, samples

of neighboring records to adjust this break have to be

determined. Individual break profiles tell much about

the uncertainties involved in estimating the adjustments.

Figure 1 shows the estimated profiles of a break caused

by transition from VIZ-A to Space Data radiosondes in

1989 at station Bethel (70219) in Alaska. The thin lines

in the upper-left panel of Fig. 1 are individual break size

estimates from comparison of neighboring anomaly re-

cords (Djk
obs). The thick green line is the RAOBCORE

estimate for this break, and the thick blue line is the

distance weighted mean of the Djk
obs profiles, which com-

prises the RICH-obs break size estimate. The break

size estimates are all clearly nonzero, and one can say

that the adjustment uncertainties are much smaller in

this case than the estimated shift. While the agree-

ment between RAOBCORE and RICH-obs estimates

is reasonable, there is considerable spread of the Djk
obs.

When estimating the same break by comparing

neighboring innovation records (Djk
t ), the spread is much

smaller. For this plot it appears clearly advantageous to

use innovations instead of observations of neighboring

stations for comparison. In particular, the reduced

spread indicates that regional climate anomalies have

substantial influence on the break size estimates if they

are not accounted for. This effect is largest for remote

stations where one has to compare stations that are far

apart. In the case of this specific break at Bethel the

maximum distance to a reference station is 3070 km.

Note also that no vertical smoothing has been applied

at any stage of break size estimation, which is an im-

portant feature of the present adjustment system. Ear-

lier experiments with vertical smoothing generally

yielded unsatisfactory results, since the vertical profiles

of the biases can be rather complex. At some occasions

there are individual profiles that are clear outliers. This

may indicate that the reference station record is not as

homogeneous as thought, or it may come from a very

different region than the other reference profiles. Of

course, there may also be issues with data density in the

time series that may cause spread. As mentioned above,

the maximum and minimum individual estimates are

removed to increase the robustness of the estimate.

While Fig. 2 shows the sampling errors involved in

estimating the break sizes in individual profiles, it is in-

structive to see also howmuchRAOBCORE andRICH

break size estimates differ. In the example in Fig. 1 this

difference between the thick blue and green curves is on

the order of 0.5 K. Figure 4 depicts the rms difference

between RAOBCORE and RICH-obs adjustment es-

timates averaged over stations with different ‘‘re-

moteness,’’ measured as the distance between the tested

station and themost distant station used for comparison.

As long as this distance is less than 1000 km the rms

difference is quite small for both RICH-obs and RICH-t.

If it is larger the difference between RAOBCORE and

RICH estimates can become relatively large, especially

for RICH-obs. The difference becomes also large for the

highest levels (,50 hPa), mainly because reference sta-

tions with enough data are hard to find there.

a. Spatiotemporal consistency of adjusted datasets

Inhomogeneities in an observation dataset often man-

ifest themselves in large trend discrepancies at nearby

stations. Trends from homogenized records should there-

fore be spatially more consistent than the unadjusted

datasets. Figure 5 indeed shows improved spatiotem-

poral consistency of trend estimates for the period 1979–

2006 for the MSU-equivalent lower stratospheric layer

for all three homogenization methods. The adjusted

datasets are more consistent than those shown in Fig. 1

of Haimberger et al. (2008) with parameter settings

similar to those used in this paper. The improvements

mainly come from the improved background and changes

in the neighbor station selection. The use of RTTOV for

calculating brightness temperatures also contributes to

the better consistency, which has been quantified with

a cost function1 introduced by Haimberger (2007).

While we think it is clear that a homogenization al-

gorithm should improve spatiotemporal consistency, this

parameter is not necessarily an indicator of improved

temporal homogeneity of large scale means. For exam-

ple, MSU brightness temperatures are spatiotemporally

1 Cost[1/N(N2 1)]�N
i �

N
j5i11Dij exp

2dij/1000km, where i and j are

radiosonde stations, dij is distance in km and Dij is the trend dif-

ference in K decade21.
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very consistent, but nevertheless can have significant in-

homogeneities or at least uncertainties (Mears et al.

2011). The temporal homogeneity can only be guaranteed

with measurement practices that allow traceability to SI

standards (Seidel et al. 2009). These are lacking for his-

toric radiosonde observations. One can, however, con-

strain the uncertainties by comparison with independent

data and with sensitivity experiments where uncertain

parameters of the adjustment system are varied.

b. Sensitivity experiments and ensembles

In RICH, the following parameters have been varied

to estimate their influence on adjustment results when

the breakpoints from RAOBCORE are fixed:

d Using either RICH-obs or RICH-t for break adjust-

ments. Both versions have their merits as discussed

above, but they can yield quite different results

particularly at remote locations.
d The test station and a reference station must have

a minimum number of data points in both intervals

a and b (see Fig. 3) to deliver a valid break size

estimate at one level. Thisminimumdata threshold for

adjustment is varied between 130 and 330 values for

interval a and ;200–900 values for interval b. The

minimum number is dependent on the pressure level.

For the higher levels fewer data are required. A smaller

number increases the chance to find nearby neighbors

for adjustment calculation but produces higher noise

and makes the estimates more susceptible to effects of

short-term climate anomalies, especially forRICH-obs.
d The number of neighbors used for calculating the

composites is another important parameter. It is varied

between 3 and 10 in the first iteration and between 9 and

30 in the second iteration (see Fig. 3). A small number

reduces the risk that information from very distant

stations can enter the break size estimates but leads to

noisier estimates due to the small sample of profiles.
d We used inverse distance weighting of the neighbors.

The 1/e decay of the weighting function defined in (15)

was varied between 3000 and 5000 km.
d When calculating adjustments, one can start with the

uppermost or the lowermost pressure level. When one

starts with the uppermost level, suitable neighbors are

probably farther away but those likely have a full

profile. The same set of stations is used for all levels of

an adjustment profile in this case.

When one starts with the lowermost level, nearby sta-

tions are more likely to be used, even if they have few

data in the uppermost levels. Data for the uppermost

levels are then taken from more distant but complete

FIG. 5. Daily mean TLS trends 1979–2006: (a) unadjusted, (b) adjusted with RAOBCORE, (c) adjusted with RICH-obs ensemble

mean, and (d) adjusted with RICH-t ensemble mean. Reduced cost values (in lower left corners of panels) indicate improvement

compared to Fig. 1 of Haimberger et al. (2008). Only for this plot the 30-hPa level has been omitted in the brightness temperature

calculation to allow a better comparison.
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records. This means that for one adjustment profile,

different sets of stations may be used for different levels.

d Treatment of the Phillips-RS4-MKIII to Vaisala-RS80

transition over Australia/Malaysia and the surrounding

islands. This transition during the years 1987–89 was

a major change in the radiosonde observing system in

the tropics and the Southern Hemisphere. Because of

the sparseness of reference stations and due to the fact

that a major ENSO event (1987 El Niño followed by a

strong La Niña in 1988) caused large regional anoma-

lies over the tropics, there is much uncertainty involved

in adjusting with neighbor composites. We used two

strategies:

a) Adjust the Phillips-Vaisala breaks using a profile

estimated from an international radiosonde in-

tercomparison (Nash and Schmidlin 1987). In

particular, RICH-obs has problems getting reli-

able break size estimates when two breakpoints

are relatively close to each other. As an additional

measure, some (about 50) breakpoints at remote

stations have been deleted to get longer intervals

for break size estimation.

b) Let RICH work as usual (i.e., strictly use neighbor

intercomparison for break size estimation; do not

delete any breakpoints detected in RAOBCORE).

In total, two choices have been tried for six parame-

ters, yielding an ensemble with 26 5 64 members. This

approach is less exhaustive than, for example, employ-

ing a Monte Carlo technique but nevertheless allows us

to explore at least part of the parameter space of the

present adjustment methods.

The combination of all these parameter settings yields

moderate spread in the RICH adjusted trend profiles.

While there is not enough space to show the effect of each

particular parameter setting, it can be said that all con-

tribute appreciably to the spread. The effect of using either

RICH-obs or RICH-t is indicated by the gray shades. For

the interval shown in the tropics, RICH-obs leads to ver-

tically smoother trend profiles than RICH-t, which yields

trend profiles that are roughly between RAOBCORE

and RICH-obs. Below we often split the ensemble into

32-member RICH-obs and RICH-t ensembles because of

their fundamental difference concerning data dependency.

Separate ensemble means of the RICH-obs and RICH-t

members have been used in Figs. 6–10 below.

Since RICH results are also dependent upon the break-

point dataset provided by RAOBCORE, we conducted

sensitivity experiments with breakpoints from different

RAOBCORE versions:

1) breakpoints from RAOBCORE v1.5 (these are used

for most plots in the present paper);

2) breakpoints from RAOBCORE v1.5 where no prior

adjustment of ERA-40 background between 1971

and 1978 has been applied, similar to RAOBCORE

v1.3 in Haimberger et al. (2008);

3) breakpoints fromRAOBCORE v1.5 where nometa-

data from documented changes of equipment are

taken into account;

4) breakpoints from RAOBCORE v1.5 with neither

background adjustment nor metadata; and

5) RAOBCORE v1.4 breakpoints, as in Haimberger

et al. (2008). This is for comparison with older findings.

The main differences between RAOBCORE v1.4

and RAOBCORE v1.5 are the absence of breaks

after 2005 in RAOBCORE v1.4 and the use of

ERA-Interim as reference from 1979 onward in

RAOBCORE v1.5.

5. Selected results

Adjustment results are documented online (http://www.

univie.ac.at/theoret-met/research/raobcore/) with thousands

of adjustment profile plots, trend maps, and time series.

Only a few are highlighted here. Figure 5 shows how

RAOBCORE and the two RICH versions improve the

spatial consistency of TLS equivalent trends. This figure

can be compared with Fig. 1 of Haimberger et al. (2008).

A clear improvement is noticeable compared to these

earlier versions of RICH-obs and RAOBCORE.

Much improved spatiotemporal consistency can be

found also in the presatellite period. This period was char-

acterized by several quite stable national observing systems,

like in theUnited States, but also by observing systemswith

extreme changes. Most notably the stratospheric tempera-

ture biases in early MESURAL radiosondes shifted by up

to 10 degrees K over Europe as well as at several stations in

the Pacific. There were also strong changes over the former

Soviet Union, and these shifts lead to the rather noisy trend

pattern in Fig. 6a. The mean RICH-obs adjustments are

able to remove most breaks, yielding a surprisingly consis-

tent map of trend estimates even at 100 hPa, as shown in

Fig. 6b.Chinese radiosondes are available but aremissing in

this plot since early Chinese ascents did not reach higher

than 300 hPa. The trend map (trend cost value 221) is even

more consistent than RAOBCORE adjusted trends (cost

355) and trends from ERA-40/ERA-Interim (cost 248). If

we restrict the ensemble to members that use 30 neighbors,

the cost is reduced even to 185.

One should not ignore, however, that there are a few

remote stations whose trends still look unrealistic after

adjustment. We could have removed them but we found

it instructive to see the limitations of the method as well.

It is also important to recognize that we show only the

ensemble mean. Many of these station trends that look
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suspicious in the ensemble mean are consistent with

their neighbors in some ensemble members. Certainly

these stations need to be worked on in future releases. It

is also interesting to see that trends over America tend

to be close to zero or even positive whereas trends over

Europe/Asia tend to be negative. It is quite possible that

the breaks that lead to strong negative trends in the

unadjusted data over the former Soviet Union have not

been fully removed.

Since there are practically no other upper air data to

compare with, the internal consistency of the adjusted

dataset, the spread of adjustment ensembles, and com-

parison with other adjusted radiosonde datasets, such as

Thorne et al. (2011a)must be themain qualitymeasures.

The sensitivity experiments below and comparison with

HadAT are some steps in this direction, although more

efforts in this direction are needed.

a. Comparison with satellite data

For the satellite era from 1979 onward, there are more

possibilities for intercomparison. Figures 7 and 8 show

Hovmöller plots of zonal mean temperature anomaly

FIG. 6. Daily mean 100-hPa trends 1964–84 in units K decade21: (a) unadjusted, trend cost 1564, (b) adjusted with

ensemble mean RICH-obs, trend cost 221. Especially in the early period, RICH has been improved compared to

Haimberger et al. (2008). The RICH cost value with this past version of RICH was 508.
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differences at the lower stratospheric and midtropo-

spheric layers. RAOBCORE v1.5 adjusted temperature

anomalies are taken as reference.2 Figure 7a shows how

substantial the temperature adjustments are in the lower

stratosphere, particularly in the tropics. The absolute

lower stratospheric cooling trends are essentially halved

by the adjustments. The strong warm bias of the un-

adjusted radiosondes in the tropics in the presatellite era

mainly stems from many stations using MESURAL

equipment in the tropical Pacific. Another important

period of changes was 1987–89 when Australia changed

the radiosonde type and the early to mid-1990s when

several former French colonies and the United States

changed the radiosonde type in the tropical Pacific. Rel-

atively small adjustments are made at polar regions, at

least in the zonal mean.

FIG. 7. Hovmöller plots of zonal mean temperature anomaly differences (anomalies relative to 2001–10 climatology, all differences

relative to RAOBCORE v1.5 adjusted temperatures) for theMSULS layer. Black lines at right of plots show trend difference 1979–2010.

Differences to (a) unadjusted radiosonde data, (b) to ERA-40/ERA-Interim reanalyses, (c) mean of RICH-obs ensemble, (d) mean of

RICH-t ensemble, (e) RSS brightness temperatures, and (f) UAH brightness temperatures.

2 This does by no means imply that the RAOBCORE-adjusted

records are the most reliable dataset.
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The ERA-Interim analysis shows less cooling than

RAOBCORE in the LS in the satellite era, particularly

in the tropics and the Southern Hemisphere. Warming

relative toRAOBCOREoccurs in 2007, when data from

the Constellation Observing System for Meteorology,

Ionosphere and Climate (COSMIC) have been in-

troduced in ERA-Interim (Poli et al. 2010). Both RICH

versions (mean RICH-obs and mean RICH-t) show

more cooling than RAOBCORE at all latitudes, the

difference being on the order of 0.1 K decade21.

RSS and STAR (not shown) data yield less cooling than

RAOBCORE in the LS, although RSS temperatures

have recently (since ca. 2002) cooled compared to

RAOBCORE. UAH shows about the same cooling as

RAOBCORE/RICH. Cooling from UAH in the extra-

tropics is rather strong compared to the other datasets.

The biases in the MT layer (Fig. 8) are much weaker

but still the unadjusted data show cooling relative to

RAOBCORE and the satellite datasets. Agreement

between RAOBCORE, RICH-t, and ERA-Interim

reanalysis is excellent in the satellite era. In the pre-

satellite era, RAOBCORE anomalies are cooler than

ERA-40, and known homogeneity problems in ERA-40

in the 1970s (Uppala et al. 2005) are evident. There is

FIG. 8. As in Fig. 7, but for the MSU MT layer. Note different contour interval and scaling.
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better consistency with HadAT (not shown), although

there is more warming in RAOBCORE/RICH than in

HadAT. The RSS and UAH satellite data show gener-

ally stronger warming than the radiosonde datasets and

ERA-Interim until 2002 and substantial cooling compared

to these datasets thereafter, especially in midlatitude re-

gions. This cooling in the past decade is noticeable not only

compared to radiosondes but also compared to GPS ra-

dio occultation (GPS-RO) data (Ladstätter et al. 2011;

Steiner et al. 2011). Those authors argue that residual

FIG. 9. MSU equivalent temperature difference time series relative to RAOBCORE v1.5. Trend difference for

period 1979–2011 in K decade21 is indicated in right panels. (a) LS global, (b) LS tropics (208S–208N), (c) MT global,

(d) MT tropics. Note scaling differences. Uncertainty bars for RSS, HadAT, RICH-obs, and RICH-t are 5% and

95%percentiles. OriginalHadAT trend spread valid for 1979–2003 has been reduced by a factor of 1.32 for the longer

interval 1979–2011. Absolute trends of RAOBCORE v1.5 can be found in Fig. 13.
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inhomogeneities in the MSU datasets are the most likely

cause given the excellent agreement between GPS-RO

data from various platforms and also given the good

agreement between radiosondes andGPS-RO after 2002.

Figure 9 shows global belt mean MSU (equivalent)

brightness temperature anomaly differences with re-

spect to RAOBCORE v1.5. RAOBCORE and RICH

show better agreement with satellite data in the LS than

HadAT in the satellite era. In the presatellite era, there

is no upper air dataset independent of radiosondes. We

can only compare with other radiosonde datasets and

reanalyses. During this period RAOBCORE adjusted

data have least cooling in the tropics, whereas they show

good agreement with the ERA-40 reanalysis when av-

eraged over the whole globe. In the tropics, the ERA-40

analysis may be biased warm in the LS due to the effect

of unadjusted MESURAL observations before 1975.

The lower panels show the comparison in the MT

layer. Note that the temperature scale is very fine: biases

of 0.1 K appear large in this plot. There is generally

excellent agreement of between RICH/RAOBCORE

and the ERA-40/ERA-Interim analysis. Only in the

tropics RICH-obs shows more warming in the satellite

era, most likely because its profiles do not exhibit the

warming minimum in the tropics around 700 hPa that is

evident in ERA-Interim and RAOBCORE adjusted

data. The transient warming feature of the UAH and

RSS MT temperatures relative to RAOBCORE with

a peak in 1998 that has been noted above for the LS is

very evident also in the MT. It could be related to en-

hanced uncertainty in the MSU record at this time

(Mears et al. 2011).

The zonal mean trend spread within the RICH-obs and

RICH-t ensembles is rather small in the satellite era com-

pared to the spread given by the HadAT and RSS ensem-

bles. Larger spread may be achievable by varying the

breakpoints, but Figs. 11c and 11d suggest that this also has

limited impact. We found that too strong variation of pa-

rameters inevitably led to strongly reduced spatiotemporal

consistency of trend estimates and is therefore not justifi-

able. If one considers thedifferences amongRAOBCORE,

RICH-obs, and RICH-t as crude uncertainty estimates,

it is comparable to the uncertainties estimated from the

RSS and HadAT ensembles.

In the presatellite era, Fig. 9 shows more spread be-

tween the radiosonde datasets. It should be noted,

however, that observation density is quite limited such

that different treatment of one breakpoint at one station

in the tropics can have quite an effect on the curves

shown in Fig. 9. RICH-t yields the coolest MT tem-

peratures. The difficulties in ERA-40 analyses due to

assimilation of Vertical Temperature Profile Radiome-

ter (VTPR) temperatures (Uppala et al. 2005) are evi-

dent in the analysis time series despite measures to

adjust the global mean background forecasts between

1971 and 1978.

Despite some improvements in spatiotemporal consis-

tency also for the time intervals 1973–2006 and 1958–2006

FIG. 10. Zonal mean trends 1979–2010 from (a) unadjusted, (b) RAOBCORE adjusted, (c) mean RICH-obs adjusted, and (d) mean

RICH-t-adjusted radiosondes.
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(not shown) at lower levels in the tropics compared to

RAOBCORE 1.4, one should therefore still be cautious

when interpreting time series from single stations or

small regions. One should also note that the adjustments

only affect temperatures, not dewpoints. This is impor-

tant for the analysis of radiosonde humidity measures

such as dewpoint depression time series (see, e.g., Dai

et al. 2011). For example, the difference between the

various radiosonde datasets is 0.2–0.3 K in the 1960s in

the tropical MT layer in Fig. 9d). A dewpoint depression

error of 0.2 K converts to about 1% uncertainty in rel-

ative humidity.

b. Vertical structure of temperature changes

One strength of radiosonde data is their vertical res-

olution, which allows us to resolve the sharp transition

from tropospheric heating to stratospheric coolingmuch

better than MSU data can.

Figure 10 shows that all three homogenization methods

yield a warming maximum in the tropical midtroposphere

in the period 1979–2010 in contrast to unadjusted data,

which show cooling in the deep tropics’ troposphere.

RAOBCOREyields theweakestmaximum in the tropical

midtroposphere; however, it has an additional warming

maximum at the 100-hPa level that appears to be in-

herited from the ERA-Interim bg (not shown) that has

a similar spike. The medians of the RICH-t and RICH-

obs ensembles yield vertically smoother trend profiles

and quite similar zonal mean trends, with RICH-obs

showing slightly less stratospheric cooling in the south-

ern extratropics. The RICH estimates in the Southern

Hemisphere, also near Antarctica, look much more

reasonable than they did in the first version ofRICH and

RAOBCORE, where Haimberger et al. (2008) found

that RICH showed only slightly more warming than

unadjusted data and RAOBCORE adjusted trends had

unrealistic vertical variations.

Figure 11a shows tropical belt mean vertical trend

profiles of unadjusted data, ERA-Interim analysis data,

RAOBCORE adjusted temperatures, and individual

profiles from the RICH-obs and RICH-t ensembles. In

Fig. 11b the RICH data are presented as quantile plots

that contain both RICH-obs and RICH-t ensembles.

The belt means for the tropics show a robust upper

tropospheric warming maximum that is gentler and

looks more plausible than the RAOBCOREmaximum.

FIG. 11. Plots of tropical belt mean trends, using different RAOBCORE versions for break detection, using (a) RAOBCORE v1.5,

(b) the same data as in (a) but ensembles are depicted with whisker quantile plots [markers in whiskers are minimum, maximum, 25%,

50%, and 75% quantiles, and mean (red)], (c) RAOBCORE 1.5 but without background correction between 1971 and 1978 and without

metadata, and (d) the earlier RAOBCORE version v1.4.
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The RICH profiles also look more plausible than those

from ERA-Interim, which shows a strong warming maxi-

mum at 100 hPa. This maximum is likely related to

a problem in the assimilation of satellite data near this level

in the early 1980s since the maximum disappears when

analyzing trends from periods starting five years later.

The impact of using breakpoints from different

RAOBCORE versions on RICH is relatively small, as

can be seen from Figs. 11c and 11d. Figure 11c shows the

profiles of RAOBCORE and RICH if no metadata and

no background adjustment in 1971–78 are applied. There

is slightly stronger cooling in the stratosphere and a less

pronounced warming maximum in the troposphere.

The trend profiles from RAOBCORE v1.4 had quite

different shapes compared to RAOBCORE v1.5 (cf.

Figs. 11b and 11d), with more warming in the upper

troposphere and less cooling in the stratosphere. The dif-

ferent breakpoints have some influence on the RICH

trends as well but these show less variation than is the dif-

ference between RAOBCORE versions 1.4 and 1.5. This

underlines the robustness of both RICH-obs and RICH-t

to moderate changes in the location of breakpoints.

The inset parameter Amp is the ratio between surface

trend and the maximum trend of the ensemble mean in

the troposphere. For the RAOBCORE v1.5 based

profiles it is 1.4 whereas for the RAOBCORE v1.4

based profiles it is 1.3. Both values are within the un-

certainty range of climatemodels (see Santer et al. 2005)

although these often predict even stronger amplifica-

tion. They are also in accord with evaluations at

ECMWF (A. J. Simmons 2011, personal communica-

tion) showing that the amplification factor tropical sur-

face temperature variability (not trends) for 300-hPa

temperatures in the ERA-Interim reanalysis for this

period is 2.2. Haimberger et al. (2012, manuscript sub-

mitted to Meteor. Z.) demonstrate that this warming

amplification seen here in the interval 1979–2011 is

persistent and often stronger in practically all 21-yr pe-

riods since 1960. This is new evidence that amplification

of surface trends in the tropics, which has been subject of

debate for 20 years (Thorne et al. 2011b; Douglass et al.

2008; Santer et al. 2008), is real. An earlier analysis of

21-yr periods only a few years ago (Thorne et al. 2007)

yielded clearly smaller amplification factors. Note also,

however, that this amplification factor is highly de-

pendent also on uncertainties in the surface datasets.

For example, Kennedy et al. (2011b) specify about

0.05 K decade21 global mean marine temperature trend

uncertainty for 30-yr trends in recent periods.

The vertical trend profiles 1979–2011 in other than

tropical regions, now using againRAOBCOREv1.5 and

the corresponding RICH ensembles, are shown in

Fig. 12. RICH adjusted data show more warming than

ERA-Interim at the lowest levels, generally fitting ex-

cellently to the Hadley Centre–Climatic Research Unit

temperature dataset (HadCRUT3v; Brohan et al. 2006)

surface trends. They show more cooling than ERA-

Interim above 100 hPa, which is attributed to still un-

adjusted breaks in RICH and to the introduction of

COSMIC data in ERA-Interim from 2007 onward. This

event has a clear effect in the LS temperatures of ERA-

Interim, as shown in Figs. 7 and 9.

Figure 13 gives an overview of trends for four MSU

layers in the tropics and for the globe. The values can be

compared with those in Blunden et al. (2011), although

these are valid for 1979–2010. The RICH ensembles fit

very well with ERA-Interim at the MT layer and show

more warming than other radiosonde datasets and the

reanalysis in the LT layer. In general, RICH showsmore

warming than UAH and fits very well to RSS in the LT

and MT. Trends from STAR v2.0 show the most pro-

nounced warming of all datasets at the MT and TS

layers. Trends for the TS layer are not available over the

1979–2011 period from RSS and UAH.

In the LS the RICH estimates showmore cooling than

reanalysis and satellite datasets, but less cooling than

HadAT data. The originally large gap between un-

adjusted radiosonde data and satellite data has been

reduced considerably. Only RAOBCORE estimates lie

within the uncertainty bounds given by RSS and fit well

to the estimates by UAH. This agreement should not be

overinterpreted, however, since RAOBCORE esti-

mates are not independent of satellite data.

The spread of the RICH ensemble is rather small,

particularly in the global mean. It is likely that the en-

semble generated from the sensitivity experiments un-

derestimates the true uncertainty. Little spread has been

generated particularly in the Northern Hemisphere, as

can be seen also in Fig. 12b). Nevertheless it is encour-

aging that at least three datasets now provide improved

uncertainty guidance through ensemble methods.

6. Discussion and conclusions

This paper described improvements on radiosonde

temperature homogenizationmadewith theRAOBCORE

and RICH homogenization methods, where RICH has

been described in some detail. Both methods utilize

background departure statistics available from climate

data assimilation systems such as ERA-40 (Uppala

et al. 2005). The method used for break detection

(RAOBCORE) has already been described by

Haimberger (2007). While RAOBCORE uses the

background forecasts also for break size estimation,

RICH estimates the breaks by comparison with refer-

ence series generated from surrounding radiosonde
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stations. Reference series are generated either with

(i) radiosonde observations (RICH-obs) or (ii) back-

ground departures of neighboring radiosonde stations

(RICH-t). While RICH-obs estimates are independent

of the background and thus of satellite information,

RICH-t seems to have advantages for individual break

size estimation. RICH-t achieves the best overall

spatiotemporal consistency of trend estimates in the

satellite era. In the presatellite era, RICH-obs has the

best spatiotemporal consistency. In the zonal belt means

it is hard to tell at the present stage whether RICH-obs

or RICH-t yield more accurate results. Thus, using

RICH-obs seems advantageous for now since the break

size estimation process is independent of satellite data.

FIG. 12. Whisker plots of global belt mean trends: (a) globe, b) extratropical Northern Hemisphere (.208N), (c) extratropical Northern

Hemisphere (.208S), and (d) southern polar region (.608S).

FIG. 13. Global and tropical beltmeanMSUequivalent trends 1979–2011 fromall datasets used in this study.HadCRUT3v surface trend is

0.12 K decade21. The gray whiskers depict the combinedRICH-obs/RICH-tau v1.5 ensemble. Vertical shifts betweenmarkers are solely for

better readability. RSS, UAH, and HadAT ensemble trends are not available for TS layer. MSU-STAR trends are not available for LT.
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It was shown that the radiosonde temperatures adjusted

by either RICH-obs or RICH-t are more consistent with

independent satellite estimates than other homogenized

radiosonde temperature datasets. In sensitivity experi-

ments and a few illustrative examples it has been shown

that

1) RICH-adjusted radiosonde data reveal the upper

tropospheric warming maximum projected by cli-

mate models and in most cases lead to spatially more

consistent trend patterns than RAOBCORE in both

the presatellite and satellite period.

2) In the satellite era adjusted trends still show less

warming/more cooling than RSS and STAR satellite

datasets, especially in the period 1979–99 and in the

LS layer. In the period 1999–2011 they show more

warming/less cooling than RSS/UAH.

3) In the presatellite era, the uncertainties become

larger but all three adjustment methods do a good

job in making the radiosonde series more consistent.

It can be expected that rejection rates of the adjusted

radiosonde data will be much smaller when assimi-

lated with a climate data assimilation system.

4) RICH-t is only slightly more sensitive to errors in the

ERA-40 background than RICH-obs. In most cases

it could be seen that RICH-t time series and trends

are between RICH-obs and RAOBCORE.

5) It is essential to have a good breakpoint database and

to avoid averaging across breakpoints.

The performance of the RAOBCORE/RICH adjust-

ment system suggests that the use of background de-

partures from climate data assimilation systems helps to

improve the original observation datasets. The next can-

didate is radiosonde wind, where earlier studies showed

promising results (Gruber and Haimberger 2008); others

are tropospheric humidity and surface parameters in re-

mote areas. It is expected that the presented methodology

will also help improving pre-1958 upper air data, as they

are collected in the ongoing ERA-CLIM project (http://

www.era-clim.eu). Thousands of plots and data as well as

additional documentation can be found online at http://

www.univie.ac.at/theoret-met/research/raobcore/.
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